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periments demonstrated that these quenchers do not quench 
fluorescence from photoexcited fluorenone under the reaction 
conditions. Thus, the observed chemiluminescence quenching 
in polymers must be due to interception of 1O2. 

/ C L 7 ' C L = 1 + IPQ/(CP + PCA)]CQ (6) 

Since our experimental method is novel and potentially 
subject to unsuspected artifacts, we seek independent confir­
mation that our conclusions are tenable. With the assumption 
that the diffusivities of 1O2 and 3O2 are similar, we may eval-
uate the lifetime, T, of singlet oxygen from the equation4 / = 
V3DT , where D is the diffusion coefficient of 3O2. Taking our 
experimental values of / and literature values of D, we calculate 
T(1O2) is 135 X Kr 6 and 430 X 1(T6 s in PS and PMMA, 
respectively. These values fall in the range of literature values8 

reported for the lifetime of 1O2 in fluid solutions: 10 X 1O-6 

to 1000 X 10~6 s. Furthermore, our values of (~500-600 A) 
are comparable with those found9 for the average diffusional 
distance of 1O2 in stearate monomolecular films (~500 A). 
The ratio of quenching constants for Rylex and Cyasorb de­
rived from the ratio of slopes in Figure 3 is ~7 (6.7 X 104 vs. 
9.4 X 103). The ratio of rate constants for these quenchers in 
fluid solution is ~30 (5 X 109vs. 1.6 X 108).7 This difference 
is attributable to a "leveling" effect of the polymer medium 
on relative quenching rates.10 

The conformity of our data and conclusions with those de­
rived from three completely independent sources of measure­
ment is substantial support for the validity of the proposed 
mechanism. The measurement of relative quenching constants 
for 1O2 in polymers now is relatively straightforward matter. 
It will be of interest to study quenching effectiveness of 
"physical" and "chemical" quenchers of 1O2 in polymers and 
to compare these results with those obtained from liquid-phase 
experiments. Such investigations are now in progress and will 
be reported in due course. 
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Bis(pentamethylcyclopentadienyl)actinide Alkyls: 
Facile Activation of Carbon Monoxide, Carbon-Carbon 
Double Bond Formation, and the Production of 
Unusual Oxygen-Bonded Migratory Insertion Products 

Sir: 

As part of our investigation of the relationship of orga-
noactinide1 electronic configuration and ligation pattern to 
chemical reactivity,2 we recently reported thermally stable 
bis(pentamethylcyclopentadienyl)thorium and -uranium di-
alkyls3 and their rapid hydrogenolysis to give bis(penta-
methylcyclopentadienyl)actinide dihydrides.3'4 The enhanced 
reactivity of the organoactinides over analogous titanium and 
zirconium compounds was noted. 

Recently, there has been considerable interest in the reac­
tions of early transition metal organometallics with carbon 
monoxide since the products,56 which are frequently not 
classical7 metal acyls, may be representations of intermediates 
in the catalytic reduction of CO.Sb8'9 Carbonylation chemistry 
of organoactinides would clearly be of interest, and we report 
here the very facile activation of CO by bis(pentamethylcy-
clopentadienyl)thorium and -uranium alkyls (the first example 
of migratory insertion involving actinide-carbon a bonds), the 
unusual molecular structure of the Th[(CH3)5C5]2(CH3)2 
dicarbonylation product, and some structure-sensitivity ob­
servations on the CO incorporation process. 

In toluene solution at -80 0C, Th[(CH3)5C5]2(CH3)2
3 and 

U[(CH3)sC5]2(CH3)2
3 take up 2.0 equiv of carbon monoxide 

(<1 atm) within 1 h (eq 1). Warming to room temperature 

2M[(CH3)5C5yCH3)2+4CO t 0 ' U e n e > {MKOUCMOCfCH^Ct CH3)O)^ 

Ia M = Th (colorless crystals) **' 

lb. M = U(brown crystals) 

produces 1 in quantitative yield. The insertion products were 
recrystallized from toluene and characterized by standard 
analytical techniques;10 cryoscopic molecular measurements 
reveal them to be dimeric.10 Infrared transitions at 1655 
(t<c=c), 1252 and 1220 (ceo) cm-1 as well as a single nonring 
methyl signal in the 'H NMR spectrum are suggestive of a 
2-butene-2,3-diolate fragment (A). This ligand was proposed 

A 

for the monomeric product of the slower (requiring 24 h at 75 
0C) dicarbonylation of Zr[(CH3)5C5]2(CH3)2.5a 

Single crystals of la, obtained by cooling of a hot toluene 
solution, are monoclinic, space group P2\jn (an alternate 
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Figure 1. ORTEP drawing of the nonhydrogen atoms for [Th(ij5-
C 5 ( C H 3 ) 5 ) 2 ( M - 0 2 C 2 ( C H 3 ) 2 ) ] 2 molecule, la. All atoms are represented 
by thermal vibrational ellipsoids drawn to encompass 50% of the electron 
density. Atoms of a given type labeled with a prirhe (') are related to those 
labeled without, by the crystallographic inversion center midway between 
the two thorium atoms. The crystallographically independent pen-
tamethylcyclopentadienyl ligands are labeled A and B, respectively. 

setting of Plx/C-C1W
1 14) with a = 11.819 (2) A, ft = 13.661 

(3) A, c= 15.658 (2) A, P= 107.08 (I)0 , and Z = 2 (dimeric 
species). Three-dimensional diffraction data (a total of 8296 
independent reflections having 20 (Mo Ka) < 63.7°) were 
collected on a computer-controlled Syntex Pl autodiffractomer 
using graphite-monochromated Mo Ka radiation and full (1° 
wide) 03 scans. The structural parameters have been refined 
to convergence (R = 0.035 for 2402 independent reflections 
having 26 (Mo Ka) < 43° and / > 3<r (/)) in cycles of unit-
weighted full-matrix least-squares refinement which used 
anisotropic thermal parameters for all nonhydrogen atoms.1' 
Crystals of la are composed of centrosymmetric dimers 
(Figure 1) in which each thorium(IV) ion adopts the familiar, 
pseudotetrahedral "bent sandwich" M(^-CsHs)2X2 config­
uration.12 The X groups are oxygen atoms of bridging 2-bu-
tene-2,3-diolate ligands, which constitute the organic portion 
of the ten-atom, two-thorium metallocycle. The structure of 
la closely approximates C2/, symmetry with the two thorium 
atoms, and the center of gravity (CpA, CpB, CPA', or CPBO, as 
well as one carbon atom with its methyl substituent from each 
(CH3)5C5 ring, being coplanar to within 0.04 A. This least-
squares mean plane intersects those of the (essentially) planar 
bridging ligands in dihedral angles of 90.5°. 

Bond lengths and angles for selected chemically distinct 
bonds in la, averaged according to approximate Cm symmetry, 
are as follows: Th-C, 2.845 (13, 28, 66, 1O),13 Th-O, 2.154 (8, 
2, 2, 2), C-O, 1.37 (2, 1,1,2), C,-C2, 1 33 (2), C1-C3, 1.51 
(2, 0, 0, 2); (cyclopentadienyl ring) C-C, 1.42 (2, 3, 9, 10), (Cp 
ring to methyl) C-C, 1.52(2,2,4, 10) A; CpA ThCpB, 129.5, 
O1ThO2

7, 99.8 (3), CpThO, 106.0 (—, 12, 15, 4), ThO,C,, 
163.6(8,11, 11, 2),13OiC1C2, 122(1,2, 2, 2), 0,C1C3, 115 
(1,1, 1,2), C3CiC2, 125(1,2,2, 2)°. The Th- -Th' separation 
is 5.407 (1) A. Atoms 0, , O2, C,, and C2 of the bridging li­
gands are coplanar to within 0.01 A while the methyl carbon 
atoms (C3 and C4) are displaced by 0.09 and 0.11 A on oppo­
site sides of the four-atom mean plane. The eight nonmetallic 
atoms of the ten-atom metallocycle are coplanar to within 0.01 
A; Th and Th' are displaced by 0.59 A on opposite sides of this 
eight-atom mean plane to give a "chair" conformation for the 
metallocycle. Values of 1.33 (2) and 1.37(2, 1, 1,2) A for the 
Ci-C2 and Ci-Oi bonds of la are typical C=C and alcoholic 
C-O bond lengths, respectively.14 

The nature of the carbonylation products can be modified 
to a significant degree by variation of the actinide substituents. 
Thus, for M[(CH3)5C5]2[CH2Si(CH3)3]2 (M = Th, U),15 the 
bulky trimethylsilylmethyl groups lead to monomeric products 
(eq 2). These insertion products were characterized by the 
standard methods.16 In contrast to the above CO coupling 
results, carbonylation of the monoalkyl M[(CH3)5C5]2(C1)-

MM<cn- ;si(cH3; toluene 

S - W N C H 2 S i ( C H 3 ) 3 

• 2CO _* /K^Of' -CH2Si(CH3J3 

S - W N c 0 ^ C H 2 S i ( C H 3 J 3 

(2) 
2a, M = Th(yellow needles) 

2bs M = U(brown needlesj 

CH2Si(CH3)3 complexes17 leads to trimethylsilyl migration 
(eq 3). Products 3a and 3b were characterized by the standard 

\ -ci 
M 

/ VH 2 Si(CH 3 ) 
(3) 

ioiuene \ —i~i 
• CO » M^ 

95-100-J / \) 
V = CH2 k 

Si(CH3), 

3a,M = Th (colorless needles) 

3b, M = U (red-orange needles) 

methods and by parallel studies of the products prepared from 
13CO.18 

A plausible scheme for the observed CO activation and 
product formation is presented in eq 4. Although there is 

\ 
*M-C;O \ 

R 

M = Th, U 

products (4) 

C-R •C-R 

D 

precedent for actinide carbonyl complexes (B) in cryogenic 
matrices (U(CO)n, n = 1 -6),'9 the present results provide the 
first evidence for such species in organoactinide reaction 
chemistry. Dihapto acyl coordination (C, D) is known for ti­
tanium and zirconium biscyclopentadienyls5a,6a_c and appears 
to reflect, among other factors, the affinity which early tran­
sition metals and actinides in relatively high oxidation states 
exhibit for oxygen-containing ligands.20'21 Such considerations 
also serve to explain the carbenoid character of the acyl 
chemistry. Alkoxy carbenes are generally nucleophilic in 
character and dimerization to form olefins is frequently 
competitive with insertion into C-H bonds or addition to ole­
fins.22 The 1,2 trimethylsilyl shift of eq 3 is additional support 
for the carbene-like reactivity of such insertion products.23 

This work further underscores the parallels in organoac­
tinide and early transition metal chemistry, with a major dif­
ference being the enhanced reactivity of the organoactinides. 
Migratory CO insertion occurs readily in the present coordi-
natively unsaturated actinide systems and the tendency of the 
resulting species to subsequently react as O-bonded carbenoids 
is a significant feature of the chemistry. The possibility that 
such reaction patterns may be relevant to mechanistic dis­
cussions of carbon monoxide reduction, especially with actinide 
oxide catalysts,9a'b'24 is under scrutiny. 
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Novel Photochemical Addition Reactions of Iminium 
Salts. Electron Transfer Initiated Additions of Olefins to 
2-Phenyl-l-pyrrolinium Perchlorate 

SiV: 

We recently described a novel photocyclization reaction 
involving the conversion of /V-allyliminium salts to pyrroli­
dines.1 In order to gain more information about the mecha­
nistic details of this process and to probe its generality, we have 
initiated a more broadly targeted study of the photochemical 
behavior of iminium salt-olefin systems. We report here the 
results of our preliminary efforts using a simple iminium salt, 
2-phenyl-l-pyrrolinium perchlorate (1), and a series of olefins 
of varying electron-donating ability. 

Irradiations2 of methanolic solutions of 1 (14 mM) con­
taining isobutylene, cyclohexene, methyl /3,j3-dimethylacrylate, 
or 1,3-butadiene (1 M) gave after neutralization and chro­
matographic separation the pyrrolidine ethers and olefins 
shown in Chart I. Triplet-sensitized irradiations of 1 in the 
presence of isobutylene using benzophenone, acetone, or 
xanthone failed to promote formation of the ether 2. Triplet 
energy transfer from Pl^CO to 1 is occurring under these 
conditions since 1 quenches both photoreduction and oxe-
tane-forming processes. Structural assignments4 to the pho-
toproducts were made using characteristic spectroscopic 
properties5 and, in selected cases, by independent synthesis. 
Interestingly, pyrrolizidine l l ,4 prepared by reduction 
(UAIH4) of the thermodynamic epimer of 6, was derived 

°or<Xx ^ r CRr** 
Ph Ph ^ 
10 u 

0002-7863/78/1500-7114S01.00/0 © 1978 American Chemical Society 


